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Abstract. For an ideal one-dimensional ferromagnetic wire with a magnetic domain wall (DW), contribu-
tion of the DW to the resistivity of the system has been investigated. We have studied the resistance due
to the magnetic impurities in the domain wall which was suspended in a weak magnetic field for two types
of chiralities. The analysis has been based on Boltzmann transport equation, within the relaxation time
approximation. Through this formalism, both increasing and decreasing of the resistance due to the DW
have been predicted in presence of Zeeman interaction as an extrinsic mechanism.

PACS. 73.63.-b Electronic transport in nanoscale materials and structures – 72.25.Rb Spin relaxation and
scattering

1 Introduction

The advances in nano-technology have enabled researchers
to fabricate low dimensional devices. Because of some es-
pecial quantum mechanical effects many different trans-
port properties are expected in these systems. This has
made an enormous interest for observing novel transport
phenomena especially in the magnetic systems which have
a spin degree of freedom more than their correspond-
ing nonmagnetic samples [1–3]. In these systems spin-
dependent scattering makes accountable role in the elec-
trical resistance. In addition, the long dephasing time of
electron’s spin and easy manipulation of the spin polar-
ization by an external magnetic field, have made these
kinds of materials to be one of the suitable candidates for
information transmission devices.

Transport in magnetic systems can be influenced
by various magnetic parameters. Experiments on iron
whiskers [4] demonstrate that domain walls (DWs) are
a source of electrical resistance. The domain wall magne-
toresistance (DW-MR) can be either positive or negative,
i.e. the DW can either increase or decrease the resistivity
of the sample. Positive magnetoresistance (MR) due to
the DW has been reported by Gregg et al. in striped do-
main structures [5]. Positive MR also have been observed
in the Ni wires [6], in single layer ferromagnetic wires of
Ni80Fe20 [7] and in a junction of mesoscopic ferromag-
netic NiFe wires [8]. In contrast, a number of experiments
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on very narrow wires and thin films have been conducted
which show negative MR [9–13].

Accordingly, there are various theoretical studies
about the MR of a DW. Quantum decoherence caused
by the DW has been mentioned as a source for reduc-
tion of the resistance in which the wall leads to negative
MR in the weakly localized regime (for example see [14]).
On the other hand, spin-dependent impurity scattering
which was proposed by Levy and Zhang was supposed
to be responsible for mixing the spin channels and pos-
itive MR [15]. In the frame work of two-band ferromag-
net Stoner model, with noncollinear magnetization, van
Gorkom et al found that the semiclassical DW-MR is ei-
ther negative or positive depending on the difference be-
tween the spin-dependent scattering lifetimes [16]. In this
model, only the intrinsic mechanisms are assumed to be
responsible for the sign of the MR of diffusive ferromag-
nets.

In some experiments of the DW-MR, a variative mag-
netic field was applied to erase the DW and then the
change in the MR was measured [5,9]. Indeed, magnetic
field as an extrinsic parameter can change the magnitude
and sign of the MR [13]. It should be noted that the Zee-
man interaction can not be responsible for scatterings in a
ferromagnet region with well defined k-states. One might
naively expect the same for the DW, but structural na-
ture of the eigenstates in the presence of a DW makes
the situation different even if the DW configuration does
not change under the influence of applied magnetic field.
Furthermore, the finite size effect of the DW should not
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Fig. 1. (a) Positive and (b) negative DW chirality.

be ignored. The finite size effect is introduced by the dif-
ference between effective potentials which are experienced
by an electron outside and inside the DW. It has been
shown that the difference in the density of states for spin’s
majority and minority bands in a ferromagnet results in
discontinuity of the electrostatic potential at the domain
boundaries [17]. This potential variation can also be de-
scribed by the magnetic energy shift due to the DW and
charge accumulation inside the DW [18]. Finite size effect
can also result in some other interesting effects such as
band mixing [19].

In this paper, we have suggested a mechanism which
predicts the role of a DW in both increasing and decreas-
ing of a wire resistivity in presence of impurities and weak
magnetic fields which do not affect the DW configuration.
In this order, we have found spin-dependent relaxation
times and the other spin-transport quantities within the
Boltzmann theory. The studies have been carried out on
the ideal one-dimensional linear Néel type DWs with two
types of positive and negative chiralities which are shown
in Figure 1. For a linear DW the local direction of mag-
netization can be described by φ(z) = ±π

d z in which plus
and minus signs are corresponding to the positive and neg-
ative chiralities, respectively, d is the DW width and φ is
the angle between the local direction of magnetization and
z axis. Although the following method is independent of
the direction of the magnetizations in the ferromagnetic
regions and depends only on functional form of the DW,
regarding the shape anisotropy the magnetization of the
system is considered to be along the wire axis (Fig. 1).

2 Approach

2.1 Description of interaction

We have taken the following Hamiltonian for a Néel type
DW which is located between two ferromagnetic regions
with opposite directions of magnetization:

H = H0 + Hsf + HH + Him, (1)

where H0 contains periodic potential and kinetic energy,
Hsf is the s-f exchange between the conduction electrons
and the localized magnetic moments, HH is the Zeeman
interaction and Him represents the interaction of localized
magnetic impurities with the electrons. Other relaxation
mechanism, the Elliott-Yafet spin-orbit interaction, is
zero for an ideal one dimensional system. We can express
each term of the Hamiltonian as follows:

H0 = − �
2

2m
∇2 + V (�r),

Hsf = ∆σ̂ · M̂(�r),

HH = −∆H σ̂ · n̂H , (2)

in which V (�r) is the lattice periodic potential, ∆ is
the s-f exchange interaction strength, σ̂ is the Pauli
matrix, M̂ is the unit vector along the direction of local
magnetization, n̂H is the unit vector along the external
magnetic field, ∆H = µBH/2 in which µB is the Bohr
magneton and H is the external magnetic field. The last
term in (1) for the magnetic impurities is:

Him =
∑

i

[vim + ∆imσ̂ · M̂(�r)]δ(�r − �ri), (3)

where the summation is over all impurities. ∆im and vim

are the exchange interaction strength and on-site electri-
cal potential of the localized impurities, respectively. The
direction of impurity magnetic moments is assumed to be
as the same as that of the local magnetization of host
atoms.

To determine the eigenstates of H0 + Hsf we applied
an approach based on the perturbation method [15]. In
this approach, for a linear DW and up to any order of ap-
proximation, the s-f interaction can not produce any mix-
ing between different k-states. This is because of position-
independent perturbation potential which is introduced
by the s-f interaction for linear DW. It means that we
can expect the contribution of s-f exchange interaction
to the resistivity for nonlinear DWs.

In terms of the dimensionless distance, wave vec-
tor and eigenenergy which are defined as z → z/d,
k → k/(π/d) and ε → ε/∆, respectively, one can express
the eigenstates for a one dimensional linear DW as
follows [15]:

Ψk
↑ = α(k↑)√

d
exp(iπk↑z)Rφ

(
1
iξk↑

)
,

Ψk
↓ = α(k↓)√

d
exp(iπk↓z)Rφ

(
iξk↓
1

)
,

(4)

where α is the normalization parameter, Rφ is the spin
rotation operator about ŷ axis corresponding to Figure 1,
ξ = ±�

2π2/(8m∆d2) in which the positive and negative
signs are corresponding to the positive and negative chiral-
ities, respectively, and the DW width, d, can be as small as
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a few nanometers. These eigenstates have been used in [20]
within a static method for determination of the spin de-
pendent transmission and reflection coefficients and the
nonlinear I − V curve characteristics of two oppositely
magnetized regions.

2.2 Spin dependent transport characteristics

Boltzmann equation prepares a framework for find-
ing deviation of equilibrium distribution function and
understanding the physics of non-equilibrium systems.
Confinement of the electrons in one dimension eliminates
the magnetic part of the Lorentz force which is exerted
on electrons, but the magnetic field still contributes in
collision term through the Zeeman interaction. So the
Boltzmann equation in the relaxation time approximation
reduces to:

e �E · 1
�
∇k fσ +

1
�
∇k ε · ∇r fσ = − fσ − f0

τσ
, (5)

in which fσ is the distribution function in the presence of
external electric field, f0 is the equilibrium Fermi-Dirac
distribution function, �E is the electric field, τσ is the re-
laxation time for up and down spinors and σ is the index
of spinors inside the DW. It should be emphasized that σ
corresponds to one of the states in equation (4) and does
not represent the spin components along the ẑ as an axis
of quantization. In the relaxation time approximation this
equation for a homogeneous system has a solution of the
form:

fσ(�k) = f0(ε) − τσ(�k)e �E · �v∂f0

∂ε
, (6)

where �v is the electron velocity. In the elastic regime and
assuming that �E is along the z axis, τσcan be determined
as follows:

1
τσ(k)

=
∫ ∑

σ′
W σσ′

kk′

[
1 − τσ′

(k′)vz(k′)
τσ(k)vz(k)

]
dk′, (7)

where the scattering rates of relaxation interaction be-
tween specified states, W σσ′

kk′ , are given by

W σσ′
kk′ =

2π

�
V σσ′

kk′ δ(εkσ − εk′σ′), (8)

in which the matrix elements of scattering potentials,
V σσ′

kk′ , are:

V σσ′
kk′ =

∣∣〈Ψk
σ

∣∣ HH + Him

∣∣∣Ψk′
σ′

〉∣∣∣
2

. (9)

Writing equation (7) for up and down components, gives
coupled equations for τ↑ and τ↓. These equations are
solved using the relations

δ(εσ(k′) − εσ(k)) =
1

8|ξk| [δ(k − k′) + δ(k + k′)], (10)

δ(ε−σ(k′) − εσ(k)) =
θ(k2 + σ/2|ξ|)

8|ξkσ| [δ(kσ − k′)

+δ(kσ + k′)] , (11)

where kσ is defined as kσ =
√

k2 + σ/2|ξ| and the step
function, θ, guarantees that there is not any transition
between two spin bands in the elastic regime, when the
Fermi level locates in the gap of these two bands.

If the equilibrium Fermi wave vector, kf , satisfies the
condition kf � √

π/2|ξ| which is appropriate for smooth
DWs and semiclassical approach, it will be convenient
to approximate the scattering amplitude between these
states as

∣∣∣V ↑↓
kk′

σ

∣∣∣ ∼=
∣∣∣V ↑↓

kk

∣∣∣. Then by considering that ampli-
tudes of non-spin-flip back scatterings are relatively small
in comparison with that of spin-flip scatterings, the relax-
ation times will be given by:

τ↑(k) ≈ �

∆

8ξk

π
∣∣∣V ↑↓

kk

∣∣∣

k−(k + sgn(k)k+)
k2 − k+k−

τ↓(k) ≈ �

∆

8ξk

π
∣∣∣V ↑↓

kk

∣∣∣

k+(k + sgn(k)k−)
k2 − k+k−

. (12)

Using τ↑ and τ↓ we can immediately determine the
conductivity, σz , and therefore the resistivity, ρ(H), of
the DW which are given by:

σz =
∑

σ

∫
1

Ez
evzfσ(�k)dk

ρ(H) = σ−1
z .

(13)

Using the resistivity at a given magnetic field we can cal-
culate the ratio of the resistivity change as follows:

δρ

ρ0
=

ρ(H) − ρ(0)
ρ(0)

. (14)

3 Results and discussion

Calculations of matrix elements, W σσ′
kk′ , should perform

with some care, especially for the Zeeman interaction. If
the Fermi energy level locates in the gap of the two spin
bands, i.e. εf < 1, then W ↑↓

kk′ = W ↓↑
kk′ = 0. This means

that, there is not any spin-flip scattering due to the relax-
ations, across these bands in the elastic regime. But when
the Fermi energy level is above the gap, i.e. εf > 1, for
the magnetic field along the rotation axis of the DW, the
Zeeman interaction can produce elastic scatterings only
while kf � √

π/2|ξ|. Furthermore, when the magnetic
field is parallel to the rotation axis of the DW, the finite
size effect of the DW is essential for the contribution of
the Zeeman interaction to the scatterings. (It is easy to
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show that when the magnetic field is perpendicular to the
rotation axis there is also a range of the Fermi energies,
in which the Zeeman interaction contributes to the elastic
regime regardless of the finite size effect of the DW.)

The system which was considered in this work has
been confined in x and y directions. This confinement re-
sults in discrete transverse modes. Because the momen-
tum transfer that can be obtained by an electron due to
the mentioned relaxations is much smaller than the re-
quired one for a transition between the nearest transverse
modes, one can use the single transverse mode approxi-
mation. It means that the transport is significantly in one
dimension along the z axis. Within this approximation the
integration of equation (7) was performed over the one di-
mensional k-space. For the elastic regime and high Fermi
energies, spin-flip scattering process is more effective than
non-flip process in the resistivity of the one-dimensional
sample. In this case, contribution of non-flip scattering
to the resistivity through the back scattering process, re-
quires nonnegligible overlap between the states with wave
vector difference of the order of 2kf , which can not be
satisfied.

Assuming the configuration of Figure 1 and using the
matrix elements W σσ′

kk′ and the relaxation times, the re-
sistivity and the ratio of its change have been deter-
mined. Figure 2 shows the results of δρ

ρ0
for two different

chiralities versus applied magnetic field which is paral-
lel to the rotation axis of the DW. As can be seen, at
a given magnetic field and effective impurity interaction
strength, ni∆im/∆, values of δρ

ρ0
for two chiralities are

significantly different but one may find an obvious sym-
metry for these situations. In fact, δρ

ρ0
remains invariant

under simultaneous change of the sign of the chirality and
applied magnetic field. Figure 2 also demonstrates both
negative and positive δρ

ρ0
ratios which indicate that in the

presence of the external magnetic field, the DW can either
decrease or increase the resistivity. In the ideal case where
other relaxation mechanisms such as electron-electron and
electron-phonon interactions are absent and when the DW
is stable under influence of magnetic field, reduction of the
resistivity by the magnetic field can be continued to zero
resistivity, i.e. δρ

ρ0
= −1. Generally, reaching this point re-

quires a large magnetic field especially for strong exchange
interaction of electrons with local moments.

Furthermore, for the mentioned ideal case, the resis-
tivity change due to the DW at higher magnetic fields is
large. The most important reason for such a high value
of resistivity change is the finite size effect of the DW
which determines the effectiveness of the external mag-
netic field. It is easy to show that as the DW width in-
creases, at a given magnetic field, δρ

ρ0
decreases. Especially,

for very wide DWs, i.e. when the finite size effects of the
DW are negligible, the Zeeman interaction can not pro-
duce any change in the resistivity. Considering the large
DW widths, the spins can adapt in an adiabatic way
to the changing magnetization orientation [21], but for
the thin DWs, resistivity enhancement occurs due to the
non-adiabaticity and mistracking effect where the trans-

Fig. 2. The ratio of the resistivity change for various effective
impurity interaction strengths versus magnetic field for two
kinds of chiralities recognized by the sign of parameter ξ =
±0.008.

port electron spins lag behind in orientation with respect
to the local magnetic field orientation inside the DW. Spe-
cially, it has been realized that for a DW width smaller
than the spin diffusion length, the mistracking effect will
be large [22].

Existence of both negative and positive δρ
ρ0

is a direct
consequence of competition between the magnetic Zeeman
interaction and the exchange interaction of electrons with
the local impurities. In other words, one can manipulate
the scattering probability by changing the magnitude of
the magnetic field. It can be shown that, in the mentioned
geometry, the phases associated with the scattering ampli-
tudes related to the both of the relaxations i.e. magnetic
field and impurities, are the same. This is due to the fact
that at high Fermi energies where the interband transi-
tions are dominant, the inequality |k↑

f − k↓
f | � 1 is sat-

isfied and one can easily show that the imaginary part of
the impurity scattering matrices can be ignored and both
types of the relaxations are real, approximately. There-
fore the effect of magnetic field can be either subtractive
or additive.

The dependence of δρ
ρ0

on the effective impurity inter-
action strength for positive chirality is depicted in Fig-
ure 3 It is appeared by this figure that in the case of
positive chirality and positive magnetic fields, only posi-
tive δρ

ρ0
appears but the reversed magnetic field results in

both positive and negative δρ
ρ0

ratios. Effectiveness of the
Zeeman interaction is truly considerable at low effective
impurity interaction strengths, while at high values, the
effect of the Zeeman interaction becomes very small and
there is no considerable distinction between the behavior
of δρ

ρ0
for positive and negative magnetic fields. In addition,

from Figure 3 or using equations (12–14), one can deduce
that for a DW with no impurities, δρ

ρ0
is always positive.

Furthermore, it can be shown that in contrast to the DW
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Fig. 3. The ratio of the resistivity change for positive chirality
at different magnetic fields versus effective impurity interaction
strength (ξ = +0.008).

with impurities, for the DWs with no impurities, δρ
ρ0

is the
same for magnetic fields which are parallel or anti-parallel
to the DW rotation axis.

4 Conclusion

The ratio of the resistivity change due to a DW in a ferro-
magnetic wire investigated using the Boltzmann equation
and within the relaxation time approximation. This analy-
sis has resulted in two distinct regimes which are specified
by impurity density and impurity exchange interaction,
Fermi wave vector and external magnetic filed. These two
regimes correspond to positive and negative δρ

ρ0
ratios. The

magnetic Zeeman interaction has not any contribution to
the resistivity for a magnetized ferromagnetic region, but
the finite size effect of the DW and spatial dependence of
DW eigenstates make a characteristic roll in the contri-
bution of an external magnetic field in elastic or nearly
elastic scatterings. When the scattering amplitude associ-
ated with the Zeeman interaction is comparable to that of
the impurity scattering at the Fermi level, the contribution
of the DW to the δρ

ρ0
ratio can be negative. Calculations

have also shown that for a DW with impurities the final
resistance of the DW is sensitive to the chirality.
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